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Subspace clustering

• Cluster data drawn from multiple low-dimensional linear or affine 
subspaces embedded in a high-dimensional space



Subspace clustering : Purpose

• Separate data into 

subspaces

• Find low-dimensional 

representations



Various Methodology:
• K-subspaces

• Assigns points to subspaces Fit subspace to each cluster Iterate  
• Drawback: Requires Number and dimensions of subspaces to be known

• Statistical approaches such as Mixture of Probabilistic PCA, Multi-stage Learning
• Assuming each subspace has Gaussian distribution subspace estimation by EM

• Drawback: Requires Number and dimensions of subspaces to be known

• Factorisation based methods
• low-rank factorization of the data matrix

• segmentation by thresholding the entries of a similarity matrix

• Generalized Principal Component Analysis (GPCA)
• fit the data with a polynomial whose gradient at a point gives a vector normal to the subspace containing 

that point

• Information theoretic approaches, such as Agglomerative Lossy Compression 
(ALC)

• Model each subspace as degenerate Gaussian segment data so as to minimise the coding length 
needed to fit these points with the mixture of Gaussians



Challenges:  

• Intersecting subspaces

• noise, outliers, missing entries

• Computational complexity: NP hard (non-deterministic polynomial-
time)

• Knowledge of dimension/number of subspaces



Sparse representation in a single subspace

• Sparse representation in a single subspace

• In many cases     can have a sparse representation in a properly 
chosen basis Ψ.

• we do not measure     directly. Instead, we measure m linear 
combinations of entries of     of the form

•

where                                          is called the measurement matrix.  

• one can recover K-sparse signals/vectors if 

• Optimisation problem: 

where



Sparse representation in a union of subspaces

• Let                           : set of bases for n disjoint linear subspaces

•

• What if y belong to i-th subspace ??

• Optimisation Problems:-



Clustering linear subspaces:

• Known:
• Sparsifying basis for the union of subspaces given by the data matrix

• Unknown: 
• not have any basis for any of the subspaces

• don’t know which data belong to which subspace

• don’t know total number of subspaces



Subspace clustering

• Assume:
• : n-independent linear subspaces   (unknown )

• : N data points collected from union of subspaces     (known )

• :  unknown dimensions of n-subspaces.

• : unknown bases for n-subspaces.

• Represent data matrix as 

where                   ;                        and                     is unknown permutation matrix 
that specifies the segmentation of data



Subspace clustering

• Let                                            where

• If a point     is a new data point in      ??    

• Optimisation problem:



Subspace clustering

• Let                      be the matrix obtained from      by removing

• The optimal solution                     has non-zero entries corresponding 
to the columns in      that lie in the same subspace as 

• Insert zero at i-th row of       to make it N-dimensional 

• Solve for each point                       

• Finally obtained a  matrix of coefficients 



Subspace clustering





Subspace clustering

• All vertices representing data points in the same subspace form a 
connected component in the graph G = (V,E) where vertices V are the 
N data points and there is an edge                   when 

• In case of n-subspaces

• where 



Subspace clustering

• Laplacian matrix of 

• Result from graph theory:-

• Segmentation of data by applying k-means to a subset of eigenvectors of 
the Laplacian



Subspace clustering



• Similar extension for affine subspaces

• For  noisy data (noise level bounded by    ) :-

• For noisy data (noise level unknown)

• For missing or corrupted data
• Very similar approach as “Inpainting”

Subspace clustering



• motion segmentation problem, we consider the Hopkins 155 dataset, 
which consists of 155 video sequences of 2 or 3 motions 
corresponding to 2 or 3 low-dimensional subspaces in each video

Results: motion segmentation



• Ext YaleB faces

Results: face clustering



Sparse Subspace clustering: Claims

• Global sparse optimization

• Can deal with data points near the intersections

• Can deal with noise, outlying / missing entries

• Don’t require dimension / number of subspaces

Achieves/outperforms state-of-the-art results in

• segmentation of rigid-body motions

• clustering of face images

• temporal segmentation of videos
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