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Subspace clustering

e Cluster data drawn from multiple low-dimensional linear or affine
subspaces embedded in a high-dimensional space




Subspace clustering : Purpose

e Separate data into

subspaces

* Find low-dimensional
representations




Various Methodology:

* K-subspaces

* Assigns points to subspaces > Fit subspace to each cluster 2> Iterate
* Drawback: Requires Number and dimensions of subspaces to be known

Statistical approaches such as Mixture of Probabilistic PCA, Multi-stage Learning

* Assuming each subspace has Gaussian distribution = subspace estimation by EM
* Drawback: Requires Number and dimensions of subspaces to be known

Factorisation based methods

* |ow-rank factorization of the data matrix
* segmentation by thresholding the entries of a similarity matrix

Generalized Principal Component Analysis (GPCA)
 fit the data with a polynomial whose gradient at a point gives a vector normal to the subspace containing
that point

Information theoretic approaches, such as Agglomerative Lossy Compression
(ALC)

* Model each subspace as degenerate Gaussian—> segment data so as to minimise the coding length
needed to fit these points with the mixture of Gaussians



Challenges:

* Intersecting subspaces
* noise, outliers, missing entries

 Computational complexity: NP hard (non-deterministic polynomial-
time)

 Knowledge of dimension/number of subspaces




Sparse representation in a single subspace

e Sparse representation in a single subspace
D

bl Zﬁii}bi = 1];’5 where T 1n RD U= [lel'- T}!’;E!- ) '-' 3 T}!’;D] {wr, S ED_}:D:I
i=1

* In many cases & can have a sparse representation in a properly
chosen basis W.

 we do not measure Z directly. Instead, we measure m linear
combinations of entries of & of the form vi=¢iz  ic{1.2-.m)

e y=[y1,¥2, " 1 Ym] =Pr=>0VUs=As
where @ = [¢1.¢.---.0,]" € R™” g called the measurement matrix.

* one can recover K-sparse S|gnals/vectors if K <m/log(D/m).




Sparse representation in a union of subspaces

* Let {4, e RPxd: )} : set of bases for n disjoint linear subspaces

o Y= As=[Ay, Az, -+, A,)] [3?53_ ,SI]T

 What if y belong to i-th subspace ?7?
e Optimisation Problems:-

min Z 1(]|si|l2 > 0) subjectto y = As.
=1

i
min Z |8i||2 subjectto y = As

i=1



Clustering linear subspaces:

* Known:
 Sparsifying basis for the union of subspaces given by the data matrix

* Unknown:
* not have any basis for any of the subspaces
* don’t know which data belong to which subspace
* don’t know total number of subspaces



Subspace clustering

* Assume:
* {S;}~,.: n-independent linear subspaces (unknown ®)

e {y; € R”}IL,: N data points collected from union of subspaces (known ©)
o {d&i < D} : unknown dimensions of n-subspaces.

. Dxdiin
o {Ai € RY"“}., :unknown bases for n-subspaces.

e Represent data matrix as Y = [y, ys. -+ . yn] = [V1, Yo, -+, ;| € RD*N

where v, erPxN ; N=3"_N;, and r e r¥*~ isunknown permutation matrix
that specifies the segmentation of data




Subspace clustering

e let s =1"1s],s],---.s]T where s, ¢ RV

* If a point ¥ is a new data pointin s; ?? -2 s; #0and s; = 0 forall j # i.

* Optimisation problem:

min ||s||p subjectto y =Ys



Subspace clustering

* Let Y; e R”*N-! be the matrix obtained from Y by removing i-th column, y..

min ||¢;||;  subjectto 1y, = Yie;

* The optimal solution ¢; € RV~! has non-zero entries corresponding
to the columns in Y: that lie in the same subspace as ¥,

* Insert zero at i-th row of ¢i to make it N-dimensional ¢; e RY
* Solve for each point i=1,....N
* Finally obtained a| matrix of coefficients C




Subspace clustering

sparse representation comes from same subspace
min |[¢illo s.t. y,=Yei, ci =0

v
min ||¢i|[i s.t. y,=Yei, ci=0

solve the sparse optimization

min ||¢;||; s.t. y;, =Yc¢;, ¢;; =0 c; =




SSC algorithm

- 1: solve the sparse optimization

min ||¢;||; s.t. ¥y, =Y¢c;, ci; =0 Ci

- 2:infer clustering from similarity graph

e connect points using sparse weights

e symmetrize the weights w;; = ¢;; + ¢;; i T BN

* apply spectral clustering




Subspace clustering

 All vertices representing data points in the same subspace form a
connected component in the graph G = (V,E) where vertices V are the
N data points and there is an edge (vi.v;) € E when ¢j; #0

* In case of n-subspaces - .

C; 0 ()

- 0 Cq 0

C = I
0 0 C, |

* anew graph G with the adjacency matrix C' where Cij = |Cij| + |Cji]



Subspace clustering

* Laplacian matrix of
G is then formed by L = D — C where D € RV*V is a
diagonal matrix with Dj; =3 Cj;.
e Result from graph theory:-

The multiplicity of the zero eigenvalue of
the Laplacian matrix L corresponding to the graph G

15 equal to the \number of connected components|of the

graph. Also, the components of the graph can be deter-

mined from the leigenspace of the zero eigenvalue.) More

* Segmentation of data by applying k-means to a subset of eigenvectors of
the Laplacian



Subspace clustering
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Figure 1. Sparse coefficients used to define the graph similarity
matrix for three sequences: 1R2TRCT-gl2, cars9, and articulated.
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Figure 2. Similarity graphs for three sequences: 1R2TRCT-gl2,
cars9, and articulated.



Subspace clustering

* Similar extension for affine subspaces
* For noisy data (noise level bounded by ¢) :-

min ||c;||; subjectto ||Y:e; — ;|2 < e

* For noisy data (noise level unknown)

min ||¢;||1 + 7 || Y;ei — ;|2

* For missing or corrupted data
* Very similar approach as “Inpainting”



Results: motion segmentation

* motion segmentation problem, we consider the Hopkins 155 dataset,
which consists of 155 video sequences of 2 or 3 motions
corresponding to 2 or 3 low-dimensional subspaces in each video

Table 1. Classification errors (%) for sequences with 2 motions

Method

GPCA

LSA

RANSAC

MS5SL

ALC

S5C-B

S5C-N

Checkerboard: 78 sequences

Mean
Median

6.09
1.03

2.97
0.27

6.52
L.75

4.46
0.00

1.55
0.29

0.83
0.00

1.12
0.00

Traffic: 31 s

equences

Mean
Median

1.41
0.00

5.43
1.48

2.55
0.21

2.23
0.00

1.59
1.17

0.23
0.00

0.02
0.00

Articulated:

11 sequences

Mean
Median

2.88
0.00

4.10
1.22

7.25
2.64

7.23
0.00

10.70
0.95

1.63
0.00

0.62
0.00

All: 1

20 sequences

Mean
Median

4.59
0.38

3.45
0.59

5.56
1.18

4.14
0.00

2.40
0.43

0.75
0.00

0.82
0.00

Table 2. Classification errors (%) for sequences with 3 motions

Method

GPCA

LSA

RANSAC

MSL

ALC

S5C-B

S5C-N

Checkerboard: 26 sequences

Mean
Median

31.95
32.93

2.80
1.77

25.78
26.00

10.38
4.61

5.20
0.67

4.49
0.54

297
0.27

Traffic: 7 se

quences

Mean
Median

19.83
19.55

25.07
23.79

12.83
11.45

1.80
0.00

7.75
0.49

0.61
0.00

0.58
0.00

Artic

ulated:

2 sequences

Mean
Median

16.85
16.85

7.25
7.25

21.38
21.38

2.71
2.71

21.08
21.08

1.60
1.60

1.42
0.00

All: 35 sequences

Mean
Median

28.66
28.26

9.73
2.33

22.94
22.03

8.23
1.76

6.69
0.67

245
0.20
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Results: face clustering

e Ext YaleB faces
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Sparse Subspace clustering: Claims

* Global sparse optimization

e Can deal with data points near the intersections
* Can deal with noise, outlying / missing entries

* Don’t require dimension / number of subspaces

Achieves/outperforms state-of-the-art results in
e segmentation of rigid-body motions

e clustering of face images

* temporal segmentation of videos



References

d

E. Elhamifar and R. Vidal, "Sparse subspace clustering,” Computer Vision and Pattern
Recognition, 20089. CVPR 2009. IEEE Conference on, Miami, FL, 2009, pp. 2790-2797.
doi: 10.1109/CVPR.2009.5206547

E. Elhamifar and R. Vidal, "Sparse Subspace Clustering: Algorithm, Theory, and
Applications," in IEEE Transactions on Pattern Analysis and Machine Inte Ilgence vol.
35, no. 11, pp. 2765-2781, Nov. 2013.

doi: 10.1109/TPAMI.2013.57

http://www.ccs.neu.edu/home/eelhami/cvpril5tutorial files/Elhamifar presentation

cvprl5.pdf

http://cis.jhu.edu/~rvidal/publications/SPM-Tutorial-Final.pdf

http://www.math.umn.edu/~lerman/Meetings/SIAM12 Ehsan.pdf

http://arxiv.org/pdf/1203.1005.pdf



http://www.ccs.neu.edu/home/eelhami/cvpr15tutorial_files/Elhamifar_presentation_cvpr15.pdf
http://cis.jhu.edu/~rvidal/publications/SPM-Tutorial-Final.pdf
http://www.math.umn.edu/~lerman/Meetings/SIAM12_Ehsan.pdf
http://arxiv.org/pdf/1203.1005.pdf




